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VoxelMorph: A Learning Framework for
Deformable Medical Image Registration
Guha Balakrishnan, Amy Zhao, Mert R. Sabuncu, John Guttag, and Adrian V. Dalca

Abstract—We present VoxelMorph, a fast learning-based
framework for deformable, pairwise medical image registration.
Traditional registration methods optimize an objective function
for each pair of images, which can be time-consuming for large
datasets or rich deformation models. In contrast to this approach,
and building on recent learning-based methods, we formulate
registration as a function that maps an input image pair to a
deformation field that aligns these images. We parameterize the
function via a convolutional neural network (CNN), and optimize
the parameters of the neural network on a set of images. Given a
new pair of scans, VoxelMorph rapidly computes a deformation
field by directly evaluating the function. In this work, we explore
two different training strategies. In the first (unsupervised)
setting, we train the model to maximize standard image matching
objective functions that are based on the image intensities. In
the second setting, we leverage auxiliary segmentations available
in the training data. We demonstrate that the unsupervised
model’s accuracy is comparable to state-of-the-art methods,
while operating orders of magnitude faster. We also show that
VoxelMorph trained with auxiliary data improves registration
accuracy at test time, and evaluate the effect of training set size
on registration. Our method promises to speed up medical image
analysis and processing pipelines, while facilitating novel direc-
tions in learning-based registration and its applications. Our code
is freely available at https://github.com/voxelmorph/voxelmorph.

Index Terms—registration, machine learning, convolutional
neural networks

I. INTRODUCTION

DEFORMABLE registration is a fundamental task in a
variety of medical imaging studies, and has been a topic

of active research for decades. In deformable registration, a
dense, non-linear correspondence is established between a
pair of images, such as 3D magnetic resonance (MR) brain
scans. Traditional registration methods solve an optimization
problem for each volume pair by aligning voxels with similar
appearance while enforcing constraints on the registration
mapping. Unfortunately, solving a pairwise optimization can
be computationally intensive, and therefore slow in practice.
For example, state-of-the-art algorithms running on the CPU
can require tens of minutes to hours to register a pair of scans
with high accuracy [1]–[3]. Recent GPU implementations have
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reduced this runtime to just minutes, but require a GPU for
each registration [4].

We present a novel registration method that learns a
parametrized registration function from a collection of vol-
umes. We implement the function using a convolutional neural
network (CNN), that takes two n-D input volumes and outputs
a mapping of all voxels of one volume to another volume.
The parameters of the network, i.e. the convolutional kernel
weights, can be optimized using only a training set of volumes
from the dataset of interest. The procedure learns a common
representation that enables alignment of a new pair of volumes
from the same distribution. In essence, we replace a costly
optimization solved for each test image pair with one global
function optimization during a training phase. Registration of
a new test scan pair is achieved by simply evaluating the
learned function on the given volumes, resulting in rapid
registration, even on a CPU. We implement our method
as a general purpose framework, VoxelMorph, available at
https://github.com/voxelmorph/voxelmorph1.

In the learning-based framework of VoxelMorph, we are
free to adopt any differentiable objective function, and in this
paper we present two possible choices. The first approach,
which we refer to as unsupervised2, uses only the input
volume pair and the registration field computed by the model.
Similar to traditional image registration algorithms, this loss
function quantifies the dissimilarity between the intensities of
the two images and the spatial regularity of the deformation.
The second approach also leverages anatomical segmentations
available at training time for a subset of the data, to learn
network parameters.

Throughout this study, we use the example of registering
3D MR brain scans. However, our method is broadly ap-
plicable to other registration tasks, both within and beyond
the medical imaging domain. We evaluate our work on a
multi-study dataset of over 3,500 scans containing images of
healthy and diseased brains from a variety of age groups.
Our unsupervised model achieves comparable accuracy to
state-of-the-art registration, while taking orders-of-magnitude
less time. Registration with VoxelMorph requires less than a
minute using a CPU and under a second on a GPU, in contrast

1We implement VoxelMorph as a flexible framework that includes the
methods proposed in this manuscript, as well as extensions that are beyond
the scope of this work [5]

2We use the term unsupervised to underscore the fact that VoxelMorph is
a learning method (with images as input and deformations as output) that
requires no deformation fields during training. Alternatively, such methods
have also been termed self-supervised, to highlight the lack of supervision, or
end-to-end, to highlight that no external computation is necessary as part of
a pipeline (such as computing ’true’ deformation fields).

https://github.com/voxelmorph/voxelmorph
https://github.com/voxelmorph/voxelmorph
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to the state-of-the-art baselines which take tens of minutes to
over two hours on a CPU.

This paper extends a preliminary version of the work
presented at the 2018 International Conference on Computer
Vision and Pattern Recognition [6]. We build on that work
by expanding analyses, and introducing an auxiliary learning
model that can use anatomical segmentations during training
to improve registration on new test image pairs for which
segmentation maps are not available. We focus on providing a
thorough analysis of the behavior of the VoxelMorph algorithm
using two loss functions and a variety of settings, as follows.
We test the unsupervised approach on more datasets and
both atlas-based and subject-to-subject registration. We then
explore cases where different types and numbers of anatomical
region segmentations are available during training as auxiliary
information, and evaluate the effect on registration of test
data where segmentations are not available. We present an
empirical analysis quantifying the effect of training set size
on accuracy, and show how instance-specific optimization
can improve results. Finally, we perform sensitivity analyses
with respect to the hyperparameter choices, and discuss an
interpretation of our model as amortized optimization.

The paper is organized as follows. Section 2 introduces
medical image registration and Section 3 describes related
work. Section 4 presents our methods. Section 5 presents
experimental results on MRI data. We discuss insights of the
results and conclude in Section 6.

II. BACKGROUND

In the traditional volume registration formulation, one (mov-
ing or source) volume is warped to align with a second (fixed
or target) volume. Fig. 1 shows sample 2D coronal slices
taken from 3D MRI volumes, with boundaries of several
anatomical structures outlined. There is significant variability
across subjects, caused by natural anatomical brain variations
and differences in health state. Deformable registration enables
comparison of structures between scans. Such analyses are
useful for understanding variability across populations or the
evolution of brain anatomy over time for individuals with
disease. Deformable registration strategies often involve two
steps: an initial affine transformation for global alignment,
followed by a much slower deformable transformation with
more degrees of freedom. We concentrate on the latter step,
in which we compute a dense, nonlinear correspondence for
all voxels.

Most existing deformable registration algorithms iteratively
optimize a transformation based on an energy function [7]. Let
f and m denote the fixed and moving images, respectively, and
let φ be the registration field that maps coordinates of f to
coordinates of m. The optimization problem can be written
as:

φ̂ = arg min
φ

L(f,m,φ) (1)

= arg min
φ

Lsim(f,m ◦ φ) + λLsmooth(φ), (2)

where m ◦ φ represents m warped by φ, function Lsim(·, ·)
measures image similarity between its two inputs, Lsmooth(·)

imposes regularization, and λ is the regularization trade-off
parameter.

There are several common formulations for φ, Lsim and
Lsmooth. Often, φ is characterized by a displacement vector
field u specifying the vector offset from f to m for each
voxel: φ = Id + u, where Id is the identity transform [8].
Diffeomorphic transforms model φ through the integral of
a velocity vector field, preserving topology and maintain-
ing invertibility on the transformation [9]. Common metrics
used for Lsim include intensity mean squared error, mutual
information [10], and cross-correlation [11]. The latter two
are particularly useful when volumes have varying inten-
sity distributions and contrasts. Lsmooth enforces a spatially
smooth deformation, often modeled as a function of the spatial
gradients of u.

Traditional algorithms optimize (1) for each volume pair.
This is expensive when registering many volumes, for example
as part of population-wide analyses. In contrast, we assume
that a field can be computed by a parameterized function of
the data. We optimize the function parameters by minimizing
the expected energy of the form of (1) over a dataset of
volume pairs. Essentially, we replace pair-specific optimization
of the deformation field by global optimization of the shared
parameters, which in other domains has been referred to as
amortization [12]–[15]. Once the global function is estimated,
a field can be produced by evaluating the function on a
given volume pair. In this paper, we use a displacement-
based vector field representation, and focus on various aspects
of the learning framework and its advantages. However, we
recently demonstrated that velocity-based representations are
also possible in a VoxelMorph-like framework, also included
in our codebase [5].

III. RELATED WORK

A. Medical Image Registration (Non-learning-based)

There is extensive work in 3D medical image registra-
tion [8], [9], [11], [16]–[21]. Several studies optimize within
the space of displacement vector fields. These include elastic-
type models [8], [22], [23], statistical parametric mapping [24],
free-form deformations with b-splines [25], discrete meth-
ods [17], [18] and Demons [19], [26]. Diffeomorphic trans-
forms, which are topology-preserving, have shown remarkable
success in various computational anatomy studies. Popular
formulations include Large Diffeomorphic Distance Metric
Mapping (LDDMM) [9], [21], [27]–[32], DARTEL [16], dif-
feomorphic demons [33], and standard symmetric normaliza-
tion (SyN) [11]. All of these non-learning-based approaches
optimize an energy function for each image pair, resulting in
slow registration. Recent GPU-based algorithms build on these
concepts to reduce algorithm runtime to several minutes, but
require a GPU to be available for each registration [4], [34].

B. Medical Image Registration (Learning-based)

There are several recent papers proposing neural networks to
learn a function for medical image registration. Most of these
rely on ground truth warp fields [35]–[39], which are either
obtained by simulating deformations and deformed images, or
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Fig. 1: Example coronal slices from the MRI brain dataset, af-
ter affine alignment. Each column is a different scan (subject)
and each row is a different coronal slice. Some anatomical
regions are outlined using different colors: L/R white matter
in light/dark blue, L/R ventricles in yellow/red, and L/R
hippocampi in purple/green. There are significant structural
differences across scans, necessitating a deformable registra-
tion step to analyze inter-scan variations.

running classical registration methods on pairs of scans. Some
also use image similarity to help guide the registration [35].
While supervised methods present a promising direction,
ground truth warp fields derived via conventional registration
tools as ground truth can be cumbersome to acquire and can
restrict the type of deformations that are learned. In contrast,
VoxelMorph is unsupervised, and is also capable of leveraging
auxiliary information such as segmentations during training if
those are available.

Two recent papers [40], [41], were the first to present
unsupervised learning based image registration methods. Both
propose a neural network consisting of a CNN and spatial
transformation function [42] that warps images to one another.
However, these two initial methods are only demonstrated on
limited subsets of volumes, such as 3D subregions [41] or 2D
slices [40], and support only small transformations [40].

A recent method has proposed a segmentation driven cost
function to be used in registering different imaging modalities
– T2w MRI and 3D ultrasound – within the same subject [43],
[44]. The authors demonstrate that a loss functions based
solely on segmentation maps can lead to an accurate within-
subject cross-modality registration network. Parallel to this
work, in one of our experiments, we demonstrate the use
of segmentation maps during training in subject-to-atlas reg-
istration. We provide an analysis of the effect of different
anatomical label availability on overall registration quality,
and evaluate how a combination of segmentation and image
based losses behaves in various scenarios. We find that a
segmentation-based loss can be helpful, for example if the
input segment labels are the same as those we evaluate on

(consistent with [43], and [44]). We also show that the image-
based and smoothness losses are still necessary, especially
when we evaluate registration accuracy on labels not observed
during training, and to encourage deformation regularity.

C. 2D Image Alignment

Optical flow estimation is a related registration problem for
2D images. Optical flow algorithms return a dense displace-
ment vector field depicting small displacements between a pair
of 2D images. Traditional optical flow approaches typically
solve an optimization problem similar to (1) using variational
methods [45]–[47]. Extensions that better handle large dis-
placements or dramatic changes in appearance include feature-
based matching [48], [49] and nearest neighbor fields [50].

In recent years, several learning-based approaches to op-
tical flow estimation using neural networks have been pro-
posed [51]–[56]. These algorithms take a pair of images as
input, and use a convolutional neural network to learn image
features that capture the concept of optical flow from data.
Several of these works require supervision in the form of
ground truth flow fields [52], [53], [55], [56], while we build
on a few that use an unsupervised objective [51], [54]. The
spatial transform layer enables neural networks to perform
both global parametric 2D image alignment [42] and dense
spatial transformations [54], [57], [58] without requiring su-
pervised labels. An alternative approach to dense estimation
is to use CNNs to match image patches [59]–[62]. These
methods require exhaustive matching of patches, resulting in
slow runtime.

We build on these ideas and extend the spatial transformer
to achieve n-D volume registration, and further show how
leveraging image segmentations during training can improve
registration accuracy at test time.

IV. METHOD

Let f,m be two image volumes defined over an n-D spatial
domain Ω ⊂ Rn. For the rest of this paper, we focus on the
case n = 3 but our method and implementation are dimension
independent. For simplicity we assume that f and m contain
single-channel, grayscale data. We also assume that f and
m are affinely aligned as a preprocessing step, so that the
only source of misalignment between the volumes is nonlinear.
Many packages are available for rapid affine alignment.

We model a function gθ(f,m) = u using a convolutional
neural network (CNN), where θ are network parameters, the
kernels of the convolutional layers. The displacement field u
between f and m is in practice stored in a n+ 1-dimensional
image. That is, for each voxel p ∈ Ω, u(p) is a displacement
such that f(p) and [m◦φ](p) correspond to similar anatomical
locations, where the map φ = Id + u is formed using an
identity transform and u.

Fig. 2 presents an overview of our method. The network
takes f and m as input, and computes φ using a set of pa-
rameters θ. We warp m to m◦φ using a spatial transformation
function, enabling evaluation of the similarity of m ◦ φ and
f . Given unseen images f and m during test time, we obtain
a registration field by evaluating gθ(f,m).

Administrator
高亮
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Fig. 2: Overview of the method. We learn parameters θ for a function gθ(·, ·), and register 3D volume m to a second, fixed
volume f . During training, we warp m with φ using a spatial transformer function. Optionally, auxiliary information such as
anatomical segmentations sf , sm can be leveraged during training (blue box).

We use (single-element) stochastic gradient descent to find
optimal parameters θ̂ by minimizing an expected loss function
using a training dataset. We propose two unsupervised loss
functions in this work. The first captures image similarity and
field smoothness, while the second also leverages anatomical
segmentations. We describe our CNN architecture and the two
loss functions in detail in the next sections.

A. VoxelMorph CNN Architecture

In this section we describe the particular architecture used
in our experiments, but emphasize that a wide range of
architectures may work similarly well and that the exact
architecture is not our focus. The parametrization of gθ(·, ·) is
based on a convolutional neural network architecture similar
to UNet [63], [64], which consists of encoder and decoder
sections with skip connections.

Fig. 3 depicts the network used in VoxelMorph, which takes
a single input formed by concatenating m and f into a 2-
channel 3D image. In our experiments, the input is of size
160 × 192 × 224 × 2, but the framework is not limited by a
particular size. We apply 3D convolutions in both the encoder
and decoder stages using a kernel size of 3, and a stride of
2. Each convolution is followed by a LeakyReLU layer with
parameter 0.2. The convolutional layers capture hierarchical
features of the input image pair, used to estimate φ. In the
encoder, we use strided convolutions to reduce the spatial
dimensions in half at each layer. Successive layers of the

UNet Architecture

1/161/81/41/2
1

1/8 1/4 1/2
1

f, m !

1 1 1

32323232 3232 32 3216 16 16 3

Fig. 3: Convolutional UNet architecture implementing
gθ(f,m). Each rectangle represents a 3D volume, generated
from the preceding volume using a 3D convolutional layer.
The spatial resolution of each volume with respect to its input
is printed underneath. The decoder consists of several 32-
filter convolutions, each followed by an upsampling layer, to
bring the volume back to full resolution. Arrows represent skip
connections, which concatenate encoder and decoder features.
The full-resolution volume is further refined using several
convolutions.

encoder therefore operate over coarser representations of the
input, similar to the image pyramid used in traditional image
registration work.

In the decoding stage, we alternate between upsampling,
convolutions and concatenating skip connections that prop-
agate features learned during the encoding stages directly
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to layers generating the registration. Successive layers of
the decoder operate on finer spatial scales, enabling precise
anatomical alignment. The receptive fields of the convolutional
kernels of the smallest layer should be at least as large as
the maximum expected displacement between corresponding
voxels in f and m. In our architecture, the smallest layer
applies convolutions over a volume (1/16)3 of the size of
the input images.

B. Spatial Transformation Function
The proposed method learns optimal parameter values in

part by minimizing differences between m◦φ and f . In order
to use standard gradient-based methods, we construct a differ-
entiable operation based on spatial transformer networks [42]
to compute m ◦ φ.

For each voxel p, we compute a (subpixel) voxel location
p′ = p + u(p) in m. Because image values are only defined
at integer locations, we linearly interpolate the values at the
eight neighboring voxels:

m ◦ φ(p) =
∑

q∈Z(p′)

m(q)
∏

d∈{x,y,z}

(1− |p′d − qd|), (3)

where Z(p′) are the voxel neighbors of p′, and d iterates over
dimensions of Ω. Because we can compute gradients or sub-
gradients,3 we can backpropagate errors during optimization.

C. Loss Functions
In this section, we propose two loss functions: an unsuper-

vised loss Lus that evaluates the model using only the input
volumes and generated registration field, and an auxiliary loss
La that also leverages anatomical segmentations at training
time.

1) Unsupervised Loss Function: The unsupervised loss
Lus(·, ·, ·) consists of two components: Lsim that penalizes
differences in appearance, and Lsmooth that penalizes local
spatial variations in φ:

Lus(f,m,φ) = Lsim(f,m ◦ φ) + λLsmooth(φ), (4)

where λ is a regularization parameter. We experimented with
two often-used functions for Lsim. The first is the mean
squared voxelwise difference, applicable when f and m have
similar image intensity distributions and local contrast:

MSE(f,m ◦ φ) =
1

|Ω|
∑
p∈Ω

[f(p)− [m ◦ φ](p)]
2
. (5)

The second is the local cross-correlation of f and
m ◦ φ, which is more robust to intensity variations found
across scans and datasets [11]. Let f̂(p) and [m̂ ◦ φ](p)
denote images with local mean intensities subtracted
out: f̂(p) = f(p)− 1

n3

∑
pi
f(pi), where pi iterates over a

n3 volume around p, with n = 9 in our experiments. The
local cross-correlation of f and m ◦ φ is written as:
CC(f,m ◦ φ) =

∑
p∈Ω

(∑
pi

(f(pi)− f̂(p))([m ◦ φ](pi)− [m̂ ◦ φ](p))

)2

(∑
pi

(f(pi)− f̂(p))2

)(∑
pi

([m ◦ φ](pi)− [m̂ ◦ φ](p))2

) . (6)

3The absolute value is implemented with a subgradient of 0 at 0.

A higher CC indicates a better alignment, yielding the loss
function: Lsim(f,m,φ) = −CC(f,m ◦ φ).

Minimizing Lsim will encourage m ◦ φ to approximate f ,
but may generate a non-smooth φ that is not physically
realistic. We encourage a smooth displacement field φ using
a diffusion regularizer on the spatial gradients of displace-
ment u:

Lsmooth(φ) =
∑
p∈Ω

‖∇u(p)‖2, (7)

and approximate spatial gradients using differences
between neighboring voxels. Specifically, for
∇u(p) =

(
∂u(p)
∂x

, ∂u(p)
∂y

, ∂u(p)
∂z

)
, we approximate

∂u(p)
∂x

≈ u((px + 1, py, pz)) − u((px, py, pz)), and use similar
approximations for ∂u(p)

∂y
and ∂u(p)

∂z
.

2) Auxiliary Data Loss Function: Here, we describe how
VoxelMorph can leverage auxiliary information available dur-
ing training but not during testing. Anatomical segmentation
maps are sometimes available during training, and can be
annotated by human experts or automated algorithms. A
segmentation map assigns each voxel to an anatomical struc-
ture. If a registration field φ represents accurate anatomical
correspondences, the regions in f and m◦φ corresponding to
the same anatomical structure should overlap well.

Let skf , s
k
m ◦φ be the voxels of structure k for f and m◦φ,

respectively. We quantify the volume overlap for structure k
using the Dice score [65]:

Dice(skf , s
k
m ◦ φ) = 2 ·

|skf ∩ (skm ◦ φ)|
|skf |+ |skm ◦ φ|

. (8)

A Dice score of 1 indicates that the anatomy matches perfectly,
and a score of 0 indicates that there is no overlap. We define
the segmentation loss Lseg over all structures k ∈ [1,K] as:

Lseg(sf , sm ◦ φ) = − 1

K

K∑
k=1

Dice(skf , s
k
m ◦ φ). (9)

Lseg alone does not encourage smoothness and agreement of
image appearance, which are essential to good registration. We
therefore combine Lseg with (4) to obtain the objective:

La(f,m, sf , sm,φ) =

Lus(f,m,φ) + γLseg(sf , sm ◦ φ), (10)

where γ is a regularization parameter.
In our experiments, which use affinely aligned images, we

demonstrate that loss (10) can lead to significant improve-
ments. In general, and depending on the task, this loss can
also be computed in a multiscale fashion as introduced in [43],
depending on quality of the initial alignment.

Since anatomical labels are categorical, a naive implementa-
tion of linear interpolation to compute sm ◦φ is inappropriate,
and a direct implementation of (8) might not be amenable
to auto-differentiation frameworks. We design sf and sm to
be image volumes with K channels, where each channel is
a binary mask specifying the spatial domain of a particular
structure. We compute sm ◦ φ by spatially transforming each
channel of sm using linear interpolation. We then compute the
numerator and denominator of (8) by multiplying and adding
sf and sm ◦ φ, respectively.
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D. Amortized Optimization Interpretation

Our method substitutes the pair-specific optimization over
the deformation field φ with a global optimization of function
parameters θ for function gθ(·, ·). This process is sometimes
referred to as amortized optimization [66]. Because the func-
tion gθ(·, ·) is tasked with estimating registration between any
two images, the fact that parameters θ are shared globally
acts as a natural regularization. We demonstrate this aspect
in Section V-C (Regularization Analysis). In addition, the
quality and generalizability of the deformations outputted by
the function will depend on the data it is trained on. Indeed,
the resulting deformation can be interpreted as simply an
approximation or initialization to the optimal deformation φ∗,
and the resulting difference is sometimes referred to as the
amortization gap [15], [66]. If desired, this initial deformation
field could be improved using any instance-specific optimiza-
tion. In our experiments, we accomplish this by treating
the resulting displacement u as model parameters, and fine-
tuning the deformation for each particular scan independently
using gradient descent. Essentially, this implements an auto-
differentiation version of conventional registration, using Vox-
elMorph output as initialization. However, most often we find
that the initial deformation, the VoxelMorph output, is already
as accurate as state of the art results. We explore these aspects
in experiments presented in Section V-D.

V. EXPERIMENTS

We demonstrate our method on the task of brain MRI reg-
istration. We first (Section V-B) present a series of atlas-based
registration experiments, in which we compute a registration
field between an atlas, or reference volume, and each volume
in our dataset. Atlas-based registration is a common formu-
lation in population analysis, where inter-subject registration
is a core problem. The atlas represents a reference, or average
volume, and is usually constructed by jointly and repeatedly
aligning a dataset of brain MR volumes and averaging them
together [67]. We use an atlas computed using an external
dataset [1], [68]. Each input volume pair consists of the atlas
(image f ) and a volume from the dataset (image m). Fig. 4
shows example image pairs using the same fixed atlas for all
examples. In a second experiment (Section V-C), we perform
hyper-parameter sensitivity analysis. In a third experiment
(Section V-D), we study the effect of training set size on regis-
tration, and demonstrate instance-specific optimization. In the
fourth experiment (Section V-E) we present results on a dataset
that contains manual segmentations. In the next experiment
(Section V-F), we train VoxelMorph using random pairs of
training subjects as input, and test registration between pairs
of unseen test subjects. Finally (Section V-G), we present an
empirical analysis of registration with auxiliary segmentation
data. All figures that depict brains in this paper show 2D slices,
but all registration is done in 3D.

A. Experimental Setup

1) Dataset: We use a large-scale, multi-site, multi-
study dataset of 3731 T1–weighted brain MRI scans from
eight publicly available datasets: OASIS [69], ABIDE [70],

! " VoxelMorph
(CC)

VoxelMorph
(MSE)

Fig. 4: Example MR coronal slices extracted from input
pairs (columns 1-2), and resulting m ◦ φ for VoxelMorph
using different loss functions. We overlaid boundaries of a
few structures: ventricles (blue/dark green), thalami (red/pink),
and hippocampi (light green/orange). A good registration will
cause structures in m ◦ φ to look similar to structures in f .
Our models are able to handle various changes in shape of
structures, including expansion/shrinkage of the ventricles in
rows 2 and 3, and stretching of the hippocampi in row 4.

ADHD200 [71], MCIC [72], PPMI [73], HABS [74], Harvard
GSP [75], and the FreeSurfer Buckner40 [1]. Acquisition
details, subject age ranges and health conditions are different
for each dataset. All scans were resampled to a 256×256×256
grid with 1mm isotropic voxels. We carry out standard pre-
processing steps, including affine spatial normalization and
brain extraction for each scan using FreeSurfer [1], and
crop the resulting images to 160 × 192 × 224. All MRIs
were anatomically segmented with FreeSurfer, and we applied
quality control using visual inspection to catch gross errors
in segmentation results and affine alignment. We include all
anatomical structures that are at least 100 voxels in volume for
all test subjects, resulting in 30 structures. We use the resulting
segmentation maps in evaluating our registration as described
below. We split our dataset into 3231, 250, and 250 volumes
for train, validation, and test sets respectively, although we
highlight that we do not use any supervised information at
any stage. In addition, the Buckner40 dataset is only used for
testing, using manual segmentations.

2) Evaluation Metrics: Obtaining dense ground truth reg-
istration for these data is not well-defined since many reg-
istration fields can yield similar looking warped images. We
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Method Dice GPU sec CPU sec |Jφ| ≤ 0 % of |Jφ| ≤ 0

Affine only 0.584 (0.157) 0 0 0 0
ANTs SyN (CC) 0.749 (0.136) - 9059 (2023) 9662 (6258) 0.140 (0.091)
NiftyReg (CC) 0.755 (0.143) - 2347 (202) 41251 (14336) 0.600 (0.208)

VoxelMorph (CC) 0.753 (0.145) 0.45 (0.01) 57 (1) 19077 (5928) 0.366 (0.114)
VoxelMorph (MSE) 0.752 (0.140) 0.45 (0.01) 57 (1) 9606 (4516) 0.184 (0.087)

TABLE I: Average Dice scores and runtime results for affine alignment, ANTs, NiftyReg and VoxelMorph for the first
experiment. Standard deviations across structures and subjects are in parentheses. The average Dice score is computed over all
structures and subjects. Timing is computed after preprocessing. Our networks yield comparable results to ANTs and NiftyReg
in Dice score, while operating orders of magnitude faster during testing. We also show the number and percentage of voxels
with a non-positive Jacobian determinant for each method, for our volumes with 5.2 million voxels within the brain. All
methods exhibit less than 1 percent such voxels.
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Fig. 5: Boxplots of Dice scores for various anatomical structures for ANTs, NiftyReg, and VoxelMorph results for the first
(unsupervised) experiment. We average Dice scores of the left and right brain hemispheres into one score for this visualization.
Structures are ordered by average ANTs Dice score.

first evaluate our method using volume overlap of anatomical
segmentations. If a registration field φ represents accurate
correspondences, the regions in f and m ◦ φ corresponding
to the same anatomical structure should overlap well (see
Fig. 4 for examples). We quantify the volume overlap between
structures using the Dice score (8). We also evaluate the
regularity of the deformation fields. Specifically, the Jacobian
matrix Jφ(p) = ∇φ(p) ∈ R3×3 captures the local properties
of φ around voxel p. We count all non-background voxels for
which |Jφ(p)| ≤ 0, where the deformation is not diffeomor-
phic [16].

3) Baseline Methods: We use Symmetric Normalization
(SyN) [11], the top-performing registration algorithm in a
comparative study [2] as a first baseline. We use the SyN
implementation in the publicly available Advanced Normal-
ization Tools (ANTs) software package [3], with a cross-
correlation similarity measure. Throughout our work with
medical images, we found the default ANTs smoothness
parameters to be sub-optimal for applying ANTs to our
data. We obtained improved parameters using a wide pa-
rameter sweep across multiple datasets, and use those in
these experiments. Specifically, we use SyN step size of 0.25,

Gaussian parameters (9, 0.2), at three scales with at most
201 iterations each. We also use the NiftyReg package, as
a second baseline. Unfortunately, a GPU implementation is
not currently available, and instead we build a multi-threaded
CPU version4. We searched through various parameter settings
to obtain improved parameters, and use the CC cost function,
grid spacing of 5, and 500 iterations.

4) VoxelMorph Implementation: We implemented our
method using Keras [76] with a Tensorflow backend [77].
We extended the 2D linear interpolation spatial transformer
layer to n-D, and here use n = 3. We use the ADAM
optimizer [78] with a learning rate of 10−4. While our imple-
mentation allows for mini-batch stochastic gradient descent,
in our experiments each training batch consists of one pair of
volumes. Our implementation includes a default of 150,000
iterations. Our code and model parameters are available online
at https://github.com/voxelmorph/voxelmorph.

B. Atlas-based Registration

In this experiment, we train VoxelMorph for atlas-based
registration. We train separate VoxelMorph networks with

4We used the latest source code, updated March, 2018 (tree [4e4525]).

https://github.com/voxelmorph/voxelmorph
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Fig. 6: Example deformation fields φ (columns 4-5) extracted
by registering the moving image (column 1) to the fixed image
(column 2) in the unsupervised experiment (Section V-B) . The
warped volume m ◦φ is shown in column 3. Displacement in
each spatial dimension is mapped to each of the RGB color
channels in column 4. The deformation fields produced by
VoxelMorph (MSE) are smooth within the brain, even when
registering significantly different moving and fixed images.

different λ regularization parameters. We then select the
network that optimizes Dice score on our validation set, and
report results on our test set.

Table I presents average Dice scores computed for all
subjects and structures for baselines of only global affine
alignment, ANTs, and NiftyReg, as well as VoxelMorph with
different losses. VoxelMorph variants perform comparably to
ANTs and NiftyReg in terms of Dice5, and are significantly
better than affine alignment. Example visual results of the
warped images from our algorithms are shown in Figs. 4 and 6.
VoxelMorph is able to handle significant shape changes for

5Both VoxelMorph variants are different from ANTs with paired t-test p-
values of 0.003 and 0.008 and with slightly higher Dice values. There is no
difference between VoxelMorph (CC) and NiftyReg (p-value of 0.21), and
no significant difference between VoxelMorph (CC) and VoxelMorph (MSE)
(p-value of 0.09)
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Fig. 7: Dice score of validation data for VoxelMorph with
varied regularization parameter λ.

various structures.
Fig. 5 presents the Dice scores for each structure as a

boxplot. For ease of visualization, we average Dice scores
of the same structures from the two hemispheres into one
score, e.g., the left and right hippocampi scores are averaged.
The VoxelMorph models achieve comparable Dice measures
to ANTs and NiftyReg for all structures, performing slightly
better on some structures such as the lateral ventricles, and
worse on others such as the hippocampi.

Table I includes a count of voxels for which the Jacobian
determinant is non-positive. We find that all methods result
in deformations with small islands of such voxels, but are
diffeomorphic at the vast majority of voxels (99.4% - 99.9%).
Figs. 6 and Fig. ?? in the supplemental material illustrate
several example VoxelMorph deformation fields. VoxelMorph
has no explicit constraint for diffeomorphic deformations,
but in this setting the smoothness loss leads to generally
smooth and well-behaved results. ANTs and NiftyReg include
implementations that can enforce or strongly encourage diffeo-
morphic deformations, but during our parameter search these
negatively affected runtime or results. In this work, we ran
the baseline implementations with configurations that yielded
the best Dice scores, which also turned out to produce good
deformation regularity.

1) Runtime: Table I presents runtime results using an
Intel Xeon (E5-2680) CPU, and a NVIDIA TitanX GPU.
We report the elapsed time for computations following the
affine alignment preprocessing step, which all of the presented
methods share, and requires just a few minutes even on a
CPU. ANTs requires two or more hours on the CPU, while
NiftyReg requires roughly 39 minutes for the given setting.
ANTs runtimes vary widely, as its convergence depends on
the difficulty of the alignment task. Registering two images
with VoxelMorph is, on average, 150 times faster on the CPU
compared to ANTs, and 40 times faster than NiftyReg. When
using the GPU, VoxelMorph computes a registration in under
a second. To our knowledge, there is no publicly available
ANTs implementation for GPUs. It is likely that the SyN
algorithm would benefit from a GPU implementation, but the
main advantage of VoxelMorph comes from not requiring
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log10 of training set size
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Test Set (Instance-Specific Opt.)
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Fig. 8: Effect of training set size on accuracy. Also shown
are results of instance-specific optimization of deformations,
after these are initialized with VoxelMorph outputs using the
optimal global parameters resulting from the training phase.
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Method Dice

Affine only 0.608 (0.175)
ANTs SyN (CC) 0.776 (0.130)
NiftyReg (CC) 0.776 (0.132)

VoxelMorph (MSE) 0.766 (0.133)
VoxelMorph (MSE) inst. 0.776 (0.132)

VoxelMorph (CC) 0.774 (0.133)
VoxelMorph (CC) inst. 0.786 (0.132)

TABLE II: Results for manual annotation experiment. We
show affine, ANTs, NiftyReg, and VoxelMorph, where “inst.”
indicates additional instance-specific optimization, as de-
scribed in Section V-D. The average Dice score is computed
over all structures and subjects, with standard deviations across
structures and subjects in parentheses.

an optimization on each test pair, as can be seen in the
CPU comparison. Unfortunately, the NiftyReg GPU version
is unavailable in the current source code on all available
repository history.

C. Regularization Analysis

Fig. 7 shows average Dice scores for the validation set for
different values of the smoothness regularization parameter λ.
The results vary smoothly over a large range of λ values, il-
lustrating that our model is robust to choice of λ. Interestingly,
even setting λ = 0, which enforces no explicit regularization
on registration, results in a significant improvement over
affine registration. This is likely because the optimal network
parameters θ need to register all pairs in the training set well,
yielding an implicit dataset regularization for the function
gθ(·, ·).

D. Training Set Size and Instance-Specific Optimization

We evaluate the effect of training set size on accuracy,
and the relationship between amortized and instance-specific
optimization. Because MSE and CC performed similarly for
atlas-based registration, in this section we use MSE. We train
VoxelMorph on subsets of different sizes from our training
dataset, and report Dice scores on: (1) the training subset, (2)
the held out test set, and (3) the test set when each deformation
is further individually optimized for each test image pair.
We perform (3) by fine-tuning the displacements u obtained
from VoxelMorph using gradient descent for 100 iterations on
each test pair, which took 23.7± 0.4 seconds on the GPU or
628.0± 4.2 seconds on a single-threaded CPU.

Fig. 8 presents our results. A small training set size of
10 scans results in slightly lower train and test Dice scores
compared to larger training set sizes. However, there is no
significant difference in Dice scores when training with 100
scans or the full dataset. Further optimizing the VoxelMorph
parameters on each test image pair results in better test Dice
scores regardless of training set size, comparable to the state-
of-the-art.

E. Manual Anatomical Delineations

Method Dice

Affine only 0.579 (0.173)
ANTs SyN (CC) 0.761 (0.117)
NiftyReg (CC) 0.772 (0.117)

VoxelMorph (MSE) 0.727 (0.146)
VoxelMorph x2 (MSE) 0.750 (0.058)

VoxelMorph x2 (MSE) inst. 0.764 (0.048)
VoxelMorph (CC) 0.737 (0.139)

VoxelMorph x2 (CC) 0.763 (0.049)
VoxelMorph x2 (CC) inst. 0.772 (0.119)

TABLE III: Results for subject-to-subject alignment using
affine, ANTs, and VoxelMorph variants, where “x2” refers to
a model where we doubled the number of features to account
for the increased inherent variability of the task, and “inst.”
indicates additional instance-specific optimization.

Since manual segmentations are not available for most
datasets, the availability of FreeSurfer segmentations enabled
the broad range of experiments above. In this experiment, we
use VoxelMorph models already trained in Section V-B to test
registration on the (unseen) Buckner40 dataset containing 39
scans. This dataset contains expert manual delineations of
the same anatomical structures used in previous experiments,
which we use here for evaluation. We also compute Vox-
elMorph with instance-specific optimization, as described in
Section V-D. The Dice score results, shown in Table II, show
that VoxelMorph using cross-correlation loss behaves compa-
rably to ANTs and NiftyReg using the same cost function,
consistent with the first experiment where we evaluated on
FreeSurfer segmentations. VoxelMorph with instance-specific
optimization further improves the results, similar to the pre-
vious experiment. On this dataset, results using VoxelMorph
with MSE loss obtain slightly lower scores, but are improved
by the instance-specific optimization procedure to be compa-
rable to ANTs and NiftyReg.

F. Subject-to-Subject Registration

In this experiment, we train VoxelMorph for subject-to-
subject registration. Since there is more variability in each reg-
istration, we double the number of features for each network
layer. We also compute VoxelMorph with instance-specific
optimization, as described in Section V-D. Table III presents
average test Dice scores on 250 randomly selected test pairs
for registration. Consistent with literature, we find that the
normalized cross correlation loss leads to more robust results
compared to using the MSE loss. VoxelMorph (with doubled
feature counts) Dice scores are comparable with ANTs and
slightly below NiftyReg, while results from VoxelMorph with
instance-specific optimization are comparable to both base-
lines.

G. Registration with Auxiliary Data

In this section, we evaluate VoxelMorph when using seg-
mentation maps during training with loss function (10). Be-
cause MSE and CC performed similarly for atlas-based reg-
istration, in this section we use MSE with λ = 0.02. We
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Fig. 9: Results on test scans when using auxiliary data during training. Top: testing on the FreeSurfer segmentation of the
general test set. Bottom: testing the same models on the manual segmentation of the Buckner40 test set. We test having
varying number of observed labels (a-c), and having coarser segmentation maps (d). Error bars indicate standard deviations
across subjects. The leftmost datapoint in each graph for all labels, corresponding to γ = 0, indicates results of VoxelMorph
without using auxiliary data (unsupervised). γ = ∞ is achieved by setting the image and smoothness terms to 0. We show
Dice scores for results from ANTs with optimal parameters, which does not use segmentation maps, for comparison.

present an evaluation of our model in two practical scenarios:
(1) when subsets of anatomical structure labels are available
during training, and (2) when coarse segmentations labels are
available during training. We use the same train/validation/test
split as the previous experiments.

1) Training with a subset of anatomical labels: In many
practical settings, it may be infeasible to obtain training
segmentations for all structures. We therefore first consider the
case where segmentations are available for only a subset of the
30 structures. We refer to structures present in segmentations
as observed, and the rest as unobserved. We considered three
scenarios, when: one, 15 (half), and 30 (all) structure segmen-
tations are observed. The first two experiments essentially sim-
ulate different amounts of partially observed segmentations.
For each experiment, we train separate models on different
subsets of observed structures, as follows. For single structure
segmentations, we manually selected four important structures
for four folds (one for each fold) of the experiment: hip-
pocampi, cerebral cortex, cerebral white matter, and ventricles.
For the second experiment, we randomly selected 15 of the
30 structures, with a different selection for each of five folds.
For each fold and each subset of observed labels, we use the
segmentation maps at training, and show results on test pairs
where segmentation maps are not used.

Fig. 9a-c shows Dice scores for both the observed and
unobserved labels when sweeping γ in (10), the auxiliary
regularization trade-off parameter. We train our models with
FreeSurfer annotations, and show results on both the general

test set using FreeSurfer annotations (top) and the Buckner40
test set with manual annotations (bottom). The extreme values
γ = 0 (or log γ = −∞) and γ = ∞ serve as theoretical
extremes, with γ = 0 corresponding to unsupervised Vox-
elMorph, and γ = ∞ corresponding to VoxelMorph trained
only with auxiliary labels, without the smoothness and image
matching objective terms.

In general, VoxelMorph with auxiliary data significantly
outperforms (largest p-value < 10−9 among the four settings)
unsupervised VoxelMorph (equivalent to γ = 0 or log γ =
−∞) and ANTs on observed structures in terms of Dice score.
Dice score on observed labels generally increases with an
increase in γ.

Interestingly, VoxelMorph (trained with auxiliary data)
yields improved Dice scores for unobserved structures com-
pared to the unsupervised variant for a range of γ values
(see Fig. 9a-b), even though these segmentations were not
explicitly observed during training. When all structures that
we use during evaluation are observed during training, we find
good Dice results at higher γ values (Fig 9c.). Registration
accuracy for unobserved structures starts declining when γ is
large, in the range log γ ∈ [−3,−2]. This can be interpreted
as the range where the model starts to over-fit to the observed
structures - that is, it continues to improve the Dice score for
observed structures while harming the registration accuracy
for the other structures (Fig. 9c)

2) Training with coarse labels: We consider the scenario
where only coarse labels are available, such as when all the
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Setting 0 0.001 0.01 0.1 ∞

one (count) 9606 (4471) 10435 (4543) 22998 (3171) 121546 (12203) 685811 (6878)
one (%) 0.18 (0.09) 0.20 (0.09) 0.44 (0.06) 2.33 (0.23) 13.14 (0.13)

half (count) 9606 (4471) 9470 (4008) 17886 (4919) 86319 (13851) 516384 (7210)
half (%) 0.18 (0.09) 0.18 (0.08) 0.34 (0.09) 1.65 (0.27) 9.90 (0.14)

all (count) 9606 (4471) 10824 (5029) 19226 (4471) 102295 (14366) 528552 (8720)
all (%) 0.18 (0.09) 0.21 (0.10) 0.37 (0.09) 1.96 (0.28) 10.13 (0.17)

coarse (count) 9606 (4471) 9343 (4117) 15190 (4416) 76677 (11612) 564493 (7379)
coarse (%) 0.18 (0.09) 0.18 (0.08) 0.29 (0.08) 1.47 (0.22) 10.82 (0.14)

TABLE IV: Regularity of deformation fields when training with auxiliary segmentations obtained using FreeSurfer, MSE loss
function and smoothness parameter of 0.02, measured using count and percentage of the number of voxels with non-positive
Jacobian determinants.
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Fig. 10: Effect of γ on warped images and deformation fields.
We show the moving, fixed and warped images (columns 1-
3) with the structures observed at train time overlaid. The
resulting deformation field is visualized in columns 4 and 5.
While providing better Dice scores for observed structures,
the deformation fields resulting from training with γ =∞ are
far more irregular than those using γ = 0.01. Similarly, the
warped image are visually less coherent for γ =∞.

white matter is segmented as one structure. This situation
enables evaluation of how the auxiliary data affects anatomical
registration at finer scales, within the coarsely delineated
structures. To achieve this, we merge the 30 structures into
four broad groups: white matter, gray matter, cerebral spinal
fluid (CSF) and the brain stem, and evaluate the accuracy of
the registration on the original structures.

Fig. 9d (top) presents mean Dice scores over the original 30
structures with varying γ. With γ of 0.01, we obtain an average
Dice score of 0.78±0.03 on FreeSurfer segmentations. This is
roughly a 3 Dice point improvement over VoxelMorph without
auxiliary information (p-value < 10−10).

3) Regularity of Deformations: We also evaluate the regu-
larity of the deformation fields both visually and by computing
the number of voxels for which the determinant of the Jacobian
is non-positive. Table IV provides the quantitative regularity

measure for all γ values, showing that VoxelMorph defor-
mation regularity degrades slowly as a function of γ (shown
on a log scale), with roughly 0.2% of the voxels exhibiting
folding at the lowest parameter value, and at most 2.3% when
γ = 0.1. Deformations from models that don’t encourage
smoothness, at the extreme value of γ =∞, exhibit 10–13%
folding voxels. A lower γ value such as γ = 0.01 therefore
provides a good compromise of high Dice scores for all
structures while avoiding highly irregular deformation fields,
and avoiding overfitting as described above. Fig 10 shows
examples of deformation fields for γ = 0.01 and γ = ∞,
and we include more figures in the supplemental material for
each experimental setting.

4) Testing on Manual Segmentation Maps: We also test
these models on the manual segmentations in the Buckner40
dataset used above, resulting in Fig. 9 (bottom). We observe
a behavior consistent with the conclusions above, with smaller
Dice score improvements, possibly due to the higher baseline
Dice scores achieved on the Buckner40 data.

VI. DISCUSSION AND CONCLUSION

VoxelMorph with unsupervised loss performs comparably to
the state-of-the-art ANTs and NiftyReg software in terms of
Dice score, while reducing the computation time from hours to
minutes on a CPU and under a second on a GPU. VoxelMorph
is flexible and handles both partially observed or coarsely
delineated auxiliary information during training, which can
lead to improvements in Dice score while still preserving the
runtime improvement.

VoxelMorph performs amortized optimization, learning
global function parameters that are optimal for an entire
training dataset. As Fig. 8 shows, the dataset need not be
large: with only 100 training images, VoxelMorph leads to
state-of-the-art registration quality scores for both training
and test sets. Instance-specific optimization further improves
VoxelMorph performance by one Dice point. This is a small
increase, illustrating that amortized optimization can lead to
nearly optimal registration.

We performed a thorough set of experiments demonstrating
that, for a reasonable choice of γ, the availability of anatomical
segmentations during training significantly improves test regis-
tration performance with VoxelMorph (in terms of Dice score)
while providing smooth deformations (e.g. for γ = 0.01,
less than 0.5% folding voxels). The performance gain varies
based on the quality and number of anatomical segmentations
available. Given a single labeled anatomical structure during



12

training, the accuracy of registration of test subjects for that
label increases, without negatively impacting other anatomy. If
half or all of the labels are observed, or even a coarse segmen-
tation is provided at training, registration accuracy improves
for all labels during test. While we experimented with one
type of auxiliary data in this study, VoxelMorph can leverage
other auxiliary data, such as different modalities or anatomical
keypoints. Increasing γ also increases the number of voxels
exhibiting a folding of the registration field. This effect may be
alleviated by using a diffeomorphic deformation representation
for VoxelMorph, as introduced in recent work [5].

VoxelMorph is a general learning model, and is not limited
to a particular image type or anatomy – it may be useful in
other medical image registration applications such as cardiac
MR scans or lung CT images. With an appropriate loss func-
tion such as mutual information, the model can also perform
multimodal registration. VoxelMorph promises to significantly
speed up medical image analysis and processing pipelines,
while opening novel directions in learning-based registration.
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I. Išgum, “End-to-end unsupervised deformable image registration with
a convolutional neural network,” in Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support, 2017,
pp. 204–212.

[41] H. Li and Y. Fan, “Non-rigid image registration using fully convolutional
networks with deep self-supervision,” preprint arXiv:1709.00799, 2017.

[42] M. Jaderberg, K. Simonyan, and A. Zisserman, “Spatial transformer
networks,” in Advances in neural information processing systems, 2015,
pp. 2017–2025.

[43] Y. Hu, M. Modat, E. Gibson, W. Li, N. Ghavami, E. Bonmati, G. Wang,
S. Bandula, C. M. Moore, M. Emberton et al., “Weakly-supervised con-
volutional neural networks for multimodal image registration,” Medical
image analysis, vol. 49, pp. 1–13, 2018.

[44] Y. Hu, M. Modat, E. Gibson, N. Ghavami, E. Bonmati, C. M. Moore,
M. Emberton, J. A. Noble, D. C. Barratt, and T. Vercauteren, “Label-
driven weakly-supervised learning for multimodal deformable image
registration,” in Biomedical Imaging (ISBI 2018), 2018 IEEE 15th
International Symposium on. IEEE, 2018, pp. 1070–1074.

[45] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” European
Conference on Computer Vision (ECCV), pp. 25–36, 2004.

[46] B. K. Horn and B. G. Schunck, “Determining optical flow,” 1980.
[47] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation

and their principles,” IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2432–2439, 2010.

[48] T. Brox and J. Malik, “Large displacement optical flow: Descriptor
matching in variational motion estimation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 33, no. 3, pp. 500–513, 2011.

[49] C. Liu, J. Yuen, and A. Torralba, “SIFT flow: Dense correspondence
across scenes and its applications,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 978–994, 2011.

[50] Z. Chen, H. Jin, Z. Lin, S. Cohen, and Y. Wu, “Large displacement op-
tical flow from nearest neighbor fields,” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2443–2450, 2013.

[51] A. Ahmadi and I. Patras, “Unsupervised convolutional neural networks
for motion estimation,” in Image Processing (ICIP), 2016 IEEE Inter-
national Conference on. IEEE, 2016, pp. 1629–1633.

[52] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov,
P. Van Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical
flow with convolutional networks,” in IEEE International Conference on
Computer Vision (ICCV), 2015, pp. 2758–2766.

[53] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox,
“Flownet 2.0: Evolution of optical flow estimation with deep networks,”
in IEEE conference on computer vision and pattern recognition (CVPR),
vol. 2, 2017, p. 6.

[54] J. Y. Jason, A. W. Harley, and K. G. Derpanis, “Back to basics:
Unsupervised learning of optical flow via brightness constancy and
motion smoothness,” in European Conference on Computer Vision.
Springer, 2016, pp. 3–10.

[55] A. Ranjan and M. J. Black, “Optical flow estimation using a spatial
pyramid network,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 2. IEEE, 2017, p. 2.

[56] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Deep
end2end voxel2voxel prediction,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition Workshops, 2016, pp.
17–24.

[57] E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg, “Transformation-
grounded image generation network for novel 3D view synthesis,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017, pp. 702–711.

[58] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros, “View synthesis
by appearance flow,” European Conference on Computer Vision (ECCV),
pp. 286–301, 2016.

[59] C. Bailer, K. Varanasi, and D. Stricker, “Cnn-based patch matching
for optical flow with thresholded hinge embedding loss,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2,
no. 3, 2017, p. 7.

[60] D. Gadot and L. Wolf, “Patchbatch: a batch augmented loss for optical
flow,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2016, pp. 4236–4245.

[61] J. Thewlis, S. Zheng, P. H. Torr, and A. Vedaldi, “Fully-trainable deep
matching,” arXiv preprint arXiv:1609.03532, 2016.

[62] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, “Deepflow:
Large displacement optical flow with deep matching,” in IEEE Interna-
tional Conference on Computer Vision (ICCV), 2013, pp. 1385–1392.

[63] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” arXiv preprint, 2017.

[64] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical Image Computing and Computer-Assisted Intervention (MIC-
CAI). Springer, 2015, pp. 234–241.

[65] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[66] J. Marino, Y. Yue, and S. Mandt, “Iterative amortized inference,” arXiv
preprint arXiv:1807.09356, 2018.

[67] M. De Craene, A. du Bois dAische, B. Macq, and S. K. Warfield,
“Multi-subject registration for unbiased statistical atlas construction,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2004, pp. 655–662.

[68] R. Sridharan, A. V. Dalca, K. M. Fitzpatrick, L. Cloonan, A. Kanakis,
O. Wu, K. L. Furie, J. Rosand, N. S. Rost, and P. Golland, “Quantifica-
tion and analysis of large multimodal clinical image studies: Application
to stroke,” in International Workshop on Multimodal Brain Image
Analysis. Springer, 2013, pp. 18–30.

[69] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, and
R. L. Buckner, “Open access series of imaging studies (oasis): cross-
sectional mri data in young, middle aged, nondemented, and demented
older adults,” Journal of cognitive neuroscience, vol. 19, no. 9, pp. 1498–
1507, 2007.

[70] A. Di Martino, C.-G. Yan, Q. Li, E. Denio, F. X. Castellanos, K. Alaerts,
J. S. Anderson, M. Assaf, S. Y. Bookheimer, M. Dapretto et al., “The
autism brain imaging data exchange: towards a large-scale evaluation of
the intrinsic brain architecture in autism,” Molecular psychiatry, vol. 19,
no. 6, pp. 659–667, 2014.

[71] M. P. Milham, D. Fair, M. Mennes, S. H. Mostofsky et al., “The ADHD-
200 consortium: a model to advance the translational potential of neu-
roimaging in clinical neuroscience,” Frontiers in systems neuroscience,
vol. 6, p. 62, 2012.

[72] R. L. Gollub, J. M. Shoemaker, M. D. King, T. White, S. Ehrlich,
S. R. Sponheim, V. P. Clark, J. A. Turner, B. A. Mueller, V. Magnotta
et al., “The mcic collection: a shared repository of multi-modal, multi-
site brain image data from a clinical investigation of schizophrenia,”
Neuroinformatics, vol. 11, no. 3, pp. 367–388, 2013.

[73] K. Marek, D. Jennings, S. Lasch, A. Siderowf, C. Tanner, T. Simuni,
C. Coffey, K. Kieburtz, E. Flagg, S. Chowdhury et al., “The parkinson
progression marker initiative (ppmi),” Progress in neurobiology, vol. 95,
no. 4, pp. 629–635, 2011.

[74] A. Dagley, M. LaPoint, W. Huijbers, T. Hedden, D. G. McLaren, J. P.
Chatwal, K. V. Papp, R. E. Amariglio, D. Blacker, D. M. Rentz et al.,
“Harvard aging brain study: dataset and accessibility,” NeuroImage,
2015.

[75] A. J. Holmes, M. O. Hollinshead, T. M. OKeefe, V. I. Petrov, G. R.
Fariello, L. L. Wald, B. Fischl, B. R. Rosen, R. W. Mair, J. L. Roffman
et al., “Brain genomics superstruct project initial data release with
structural, functional, and behavioral measures,” Scientific data, vol. 2,
2015.

[76] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[77] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[78] D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

https://github.com/fchollet/keras

	Introduction
	Background
	Related Work
	Medical Image Registration (Non-learning-based)
	Medical Image Registration (Learning-based)
	2D Image Alignment

	Method
	VoxelMorph CNN Architecture
	Spatial Transformation Function
	Loss Functions
	Unsupervised Loss Function
	Auxiliary Data Loss Function

	Amortized Optimization Interpretation

	Experiments
	Experimental Setup
	Dataset
	Evaluation Metrics
	Baseline Methods
	VoxelMorph Implementation

	Atlas-based Registration
	Runtime

	Regularization Analysis
	Training Set Size and Instance-Specific Optimization
	Manual Anatomical Delineations
	blueSubject-to-Subject Registration
	Registration with Auxiliary Data
	Training with a subset of anatomical labels
	Training with coarse labels
	bluedecRegularity of Deformations
	bluedecTesting on Manual Segmentation Maps


	Discussion and Conclusion
	References



